基于脑电图(EEG)的脑生物识别技术已被越来越多地用于个人鉴定。传统的机器学习技术以及现代的深度学习方法已采用有希望的结果。在本文中,我们提出了EEG-BBNET,这是一个混合网络,该网络将卷积神经网络(CNN)与图形卷积神经网络(GCNN)集成在一起。 CNN在自动特征提取方面的好处以及GCNN通过图形表示在EEG电极之间学习连通性的能力被共同利用。我们检查了各种连通性度量,即欧几里得距离,皮尔逊的相关系数,相锁定值,相位滞后指数和RHO索引。在由各种脑部计算机界面(BCI)任务组成的基准数据集上评估了所提出的方法的性能,并将其与其他最先进的方法进行了比较。我们发现,使用会议内数据的平均正确识别率最高99.26%,我们的模型在事件相关电位(ERP)任务中的所有基线都优于所有基准。具有Pearson相关性和RHO指数的EEG-BBNET提供了最佳的分类结果。此外,我们的模型使用会议间和任务数据显示出更大的适应性。我们还研究了我们提出的模型的实用性,该模型的电极数量较少。额叶区域上的电极放置似乎最合适,性能损失最少。
translated by 谷歌翻译
本文提出了一种非相互作用的端到端解决方案,用于使用完全同构加密(FHE)的生物识别模板的安全融合和匹配。给定一对加密的特征向量,我们执行以下密码操作,i)特征串联,ii)通过学习的线性投影降低融合和尺寸,iii)缩放到单位$ \ ell_2 $ -norm和iv)匹配分数计算。我们的方法被称为heft(生物识别模板的同派加密融合),是定制设计的,以克服FHE所施加的独特约束,即缺乏对非偏心操作的支持。从推论的角度来看,我们系统地探索了不同的数据包装方案,以进行计算有效的线性投影,并引入多项式近似来进行比例归一化。从训练的角度来看,我们引入了一种了解线性投影矩阵的FHE感知算法,以减轻近似归一化引起的错误。与各自的UNIBIOMETICTAINS相比,对面部和语音生物识别技术的模板融合和匹配的实验评估表明,(I)将生物识别验证性能提高了11.07%和9.58%的AUROC,同时将特征向量压缩为16(512d至32d), ,(ii)融合了一对加密的特征向量,并计算出在884毫秒内的1024个画廊的匹配分数。代码和数据可在https://github.com/human-analysis/crypted-biometric-fusion上获得
translated by 谷歌翻译